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CAD-Based Aerodynamic Design of Complex
Configurations Using a Cartesian Method

Marian Nemec,∗ Michael J. Aftosmis,†

and Thomas H. Pulliam‡

NASA Ames Research Center
MS T27B, Moffett Field, CA 94035

A modular framework for aerodynamic optimization of complex geometries is devel-
oped. By working directly with a parametric CAD system, complex-geometry models are
modified and tessellated in an automatic fashion. The use of a component-based Carte-
sian method significantly reduces the demands on the CAD system, and also provides
for robust and efficient flowfield analysis. The optimization is controlled using either a
genetic or quasi–Newton algorithm. Parallel efficiency of the framework is maintained
even when subject to limited CAD resources by dynamically re-allocating the processors
of the flow solver. Overall, the resulting framework can explore designs incorporating
large shape modifications and changes in topology.

Introduction

AERODYNAMIC design is inherently a multi-
disciplinary problem that involves complex sur-

face geometry, competing objectives, multiple operat-
ing conditions, and strict design constraints. Con-
sequently, important considerations for an effective
optimization framework include: 1) geometry model-
ing and surface discretization, 2) objective function
and constraint evaluation, which includes methods
for mesh generation, surface- and volume-mesh per-
turbation, and flow solution, and 3) the selection of
optimization techniques. In modern engineering de-
sign environments, the surface geometry is generally
represented by a parametric Computer-Aided-Design
(CAD) model. Since all downstream analysis and de-
sign relies on this representation, the CAD model,
accessible in its native environment, should serve as
the basis of automated optimization.

Recently, a promising approach has been developed
that allows direct access to the native CAD represen-
tation. This approach is based on the Computational
Analysis and PRogramming Interface (CAPRI).1–5 In
addition to providing an effective tool for surface
discretization, CAPRI allows the modification of ad-
justable parameters built into the CAD model. Hence,
the design variables and geometric constraints can be
intrinsic to the CAD model. Upon a regeneration of
the model in response to a parameter change, CAPRI
constructs a “water-tight” surface triangulation, which
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can be automatically refined to obtain a CFD-ready
triangulation.

Robust and efficient volume-mesh generation is the
next critical part of the optimization framework.
Traditional, body-fitted structured and unstructured
mesh generation algorithms can be computationally
expensive and usually require user supervision. This
has motivated the development of mesh-perturbation
schemes6–8 that are used during the optimization pro-
cess to modify a given baseline mesh. The location
of nodes is tracked as the mesh deforms, which allows
the use of fast solution-transfer algorithms and helps
maintain a smooth design landscape. Unfortunately,
the mesh-perturbation schemes may breakdown and
require user intervention for topology and sufficiently
large geometry changes.

Cartesian methods offer a promising alternative.
The mesh generation is fast, robust, and essentially
fully automatic.9,10 Due to the decoupling of the sur-
face discretization from the volume mesh, Cartesian
mesh generation is virtually insensitive to the complex-
ity of the input geometry. When combined with robust
high-fidelity flow solvers, the Cartesian approach pro-
vides a unique capability, especially for problems with
moving bodies in relative motion11 and automated op-
timization.8,12,13 By allowing general topology and
radical geometry changes, the optimization algorithm
is able to explore new regions of the design landscape
that may lead to superior and unconventional designs.

For the problems under consideration here, the
most promising optimization algorithms range from
autonomous approaches such as evolutionary14–16 and
finite-difference gradient-based algorithms,17 to meth-
ods requiring greater coupling such as the adjoint
approach18–20 for gradient computations. Further-
more, the use of these techniques in conjunction with
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pattern-search techniques21 and approximation meth-
ods,22,23 can help deal with complex design landscapes
and reduce the computational cost of the optimization.

The selection of a particular optimizer is problem
dependent and involves the classic trade-off between
specialization and generality. It is therefore desir-
able to construct a flexible optimization framework
to serve as a test-bed for various strategies and al-
gorithms. Important factors in the integration of an
optimization algorithm into such frameworks include:
1) scalability of the optimization technique in a parallel
computing environment, 2) degree of coupling among
the optimization modules and the high-fidelity solvers
within the framework, 3) flexibility in the formulation
of objectives and constraints, and 4) effectiveness in
multi-modal and noisy design landscapes.

In targeting the design of complex three-dimensional
geometry, the presence of noise, or non-smoothness, is
unavoidable in the design landscape. The noise stems
from three primary sources. First, physical sources
such as local flow unsteadiness due to complex geome-
try may hinder deep convergence of the flow solution.
Second, noise due to geometry-representation and dis-
cretization, which may be caused by the details of
the model construction, the internal characteristics
of the CAD system, or the surface tessellation al-
gorithm. Third, noise due to discretization error of
the volume mesh. For embedded-boundary Cartesian
methods, the intersection of the surface geometry with
the volume mesh changes non-smoothly as the geom-
etry evolves during the optimization. Consequently,
it is important to evaluate the influence of noise on
the optimization algorithm, since the presence of false
extrema in the design landscape may slow down and
even stall the optimization process.

The objective for this paper is to present the de-
velopment of an optimization capability for Cart3D,
a Cartesian inviscid-flow analysis package of Aftosmis
et al.10,24 We present the construction of a new op-
timization framework and we focus on the following
issues:

• Component-based geometry parameterization
approach using parametric-CAD models and
CAPRI. A novel geometry server is introduced
that addresses the issue of parallel efficiency
while only sparingly consuming CAD resources.

• The use of genetic and gradient-based algorithms
for three-dimensional aerodynamic design prob-
lems. The influence of noise on the optimization
methods is studied.

Our goal is to create a responsive and automated
framework that efficiently identifies design modifica-
tions that result in substantial performance improve-
ments. In addition, we examine the architectural is-
sues associated with the deployment of a CAD-based

design approach in a heterogeneous parallel comput-
ing environment that contains both CAD worksta-
tions and dedicated compute engines. The optimiza-
tion framework is first validated by solving a lift-
constrained drag minimization problem. Thereafter,
we demonstrate the effectiveness of the framework for
a design problem that features topology changes and
complex geometry.

Optimization Problem Formulation
The aerodynamic optimization problem consists of

determining values of design variables X, such that
the objective function J is minimized

min
X

J (X,Q) (1)

subject to constraint equations Cj :

Cj(X, Q) ≤ 0 j = 1, . . . , Nc (2)

where the vector Q denotes the conservative flowfield
variables and Nc denotes the number of constraint
equations. The flowfield variables are forced to satisfy
the governing flowfield equations, F , within a feasible
region of the design space Ω:

F(X,Q) = 0 ∀ X ∈ Ω (3)

which implicitly defines Q = f(X). The govern-
ing flow equations are the three-dimensional Euler
equations of a perfect gas, where the vector Q =
[ρ, ρu, ρv, ρw, ρE]T .

The objective function defines the goals of the opti-
mization problem, while the constraint equations limit
the feasible region of the design space. The constraints
may involve performance functionals, such as lift, ge-
ometric quantities, such as volumes and thicknesses,
and also simple bound constraints for design variables.
A modular framework is constructed to solve the opti-
mization problem defined by Eqs. 1–3. An evaluation
of the objective function and constraints requires the
coupling of several software components that form the
analysis module of the framework. These components
are outlined in Fig. 1 and are described below. Follow-
ing the analysis module, we present the optimization
algorithms and a detailed description of the optimiza-
tion framework.

CAD-Based Geometry Modeling
In traditional approaches for geometry modeling

and regeneration, one begins by either importing
a given baseline surface discretization to a geome-
try parameterization tool, or defining a set of ideal-
ized components within a geometry parameterization
tool.6,25–27 Most likely, the baseline surface discretiza-
tion has been generated from an existing CAD ge-
ometry. This approach offers fast and accurate re-
generation of surfaces and computation of component
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CAPRI

Geometry Regeneration
and Surface Tessellation

Objective and Constraint
Evaluation

Cart3D

Flow Solution

Volume−MeshGeneration

Component Intersection
(Definition of Wetted Surface)

Fig. 1 Components of the analysis module

intersections. Furthermore, the source code is usually
available, and hence the computation of design sensi-
tivities (if required) is possible by the use of automatic
differentiation or analytically.

However, the geometry parameterization tool is usu-
ally tailored to a specific set of allowable topolo-
gies, and provides a limited variety of design vari-
ables. For example, only wing-body configurations
with prescribed design variables for planform and
shape changes may be allowed. Such built-in restric-
tions limit the feasible region of the design space, and
consequently, the best design may never be realized.
Although it is always possible to improve the parame-
terization tool with additional code development, this
burden becomes prohibitive when faced with complex,
integrated configurations and multidisciplinary prob-
lems. Ultimately, this effort leads to the development
of a specialized in-house tool mimicking aspects of a
parametric CAD system.

An alternative approach is to consider the use of a
commercial-CAD system.28 Most present-day CAD
software is based on parametric design and feature
modeling. A part is constructed by defining features
with adjustable parameters. The features define a se-
quence of operations, for example an extrusion of a
sketched cross section, and are organized in the form
of a feature tree. This forms the master-model of the
part, and different instances of the part can be gen-
erated for various parameter values by following the
template of the master-model. Individual parts can
be grouped in hierarchical dynamic assemblies, which

allow relative motion between constituent parts. Fur-
thermore, features not required for the analysis (or
design) problem at hand can be suppressed. The po-
tential advantages of this approach include:

• Generality: there are virtually no pre-defined lim-
itations on the complexity of parts and assemblies.

• Consistency: the part is always queried in its na-
tive environment, without geometry translation.

• Variable fidelity: through the use of feature sup-
pression, various levels of part abstraction are
possible.

• Natural constraints: the feature-based modeling
captures the design intent of the part or assem-
bly and therefore can be used to impose natural
constraints on the geometry.

Although this approach is conceptually very appeal-
ing, the integration of a commercial CAD system into
an optimization framework requires careful considera-
tion of the following issues:

1. Parts and assemblies must be created with de-
sign modifications in mind. Although this sounds
obvious, the selection of parameters for a design
study can be a challenging task and the construc-
tion of flexible and robust CAD models requires
significant CAD-system experience. The geome-
try parameterization issue is placed well upstream
in the design/ analysis process.

2. The use of “legacy” geometry, or geometry with
no parametric CAD representation, requires spe-
cial consideration. Unfortunately, most CFD ge-
ometry today belongs to this category.

3. The interface for accessing the parameters of the
CAD model depends on the specific CAD system.

4. The efficiency of the geometry updates and the
surface discretization depend on the attributes of
the proprietary CAD-geometry kernel.

5. Practical issues such as the number of available
CAD licenses need to be considered in the design
of parallel optimization procedures.

6. The issue of differentiability and the use of mesh-
perturbation algorithms for non-smooth changes
in the surface discretization.

Items 1 and 2 are organizational issues that are be-
yond the scope of this work. It is clear, however,
that current production and development environ-
ments make extensive use of feature-based solid mod-
eling for engineering analysis and design. While the
mesh requirements of CFD simulations place unusual
demands on the CAD system, it is highly advantageous
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to leverage its sophisticated modeling capabilities. We
use CAPRI3–5 to address items 3 and 4, which we
discuss in the following section. The architecture of
the optimization framework, presented thereafter, mit-
igates the concerns of item 5. Item 6 remains an
open issue. Finite-difference schemes can provide good
approximations of sensitivity information, but their
dependence on stepsize limits the accuracy, and in
some cases the robustness, of this approach.26 Mesh-
perturbation schemes introduce additional difficulties
due to the requirement of tracking surface deforma-
tions.4

Role of CAPRI
CAD-Model Regeneration

CAPRI exposes the master-model feature tree of the
CAD model and allows direct modification of parame-
ters within that tree. A detailed overview of CAPRI’s
extensive capabilities is given in Ref. 5. An alternative
to CAPRI is the direct use of “Developer Toolkits”
that are available for most CAD systems. CAPRI,
however, provides a unified interface for most CAD
systems.

Most design variables are associated directly with
values exposed in the feature tree. An exception
is surface shape modification, which requires the ac-
cess to feature information at a high level of detail.
For example, the control-point locations for individ-
ual curves are required. CAPRI is able to expose
non-dimensional curve data points of sketched fea-
tures, which can be modified to generate new surfaces.
For example, these may be the data points of airfoil
sections that are lofted to define a wing, or fuselage
cross-sections. Note that the use of each data point
as a design variable would lead to very large optimiza-
tion problems and potentially non-smooth curves. To
circumvent this difficulty, we use B-spline curves to
define each cross-section. The shape design variables
are associated with the B-spline control points and are
external to the CAD system. This additional level of
indirection can easily accommodate other approaches,
such as the Hicks-Henne shape functions.4

Fig. 2 shows an example of two very different in-
stances of the same parametric-CAD model for a
generic wing part. The generic model consists of the
typical planform parameters that include surface area,
aspect ratio, taper ratio, sweep, and root-section and
tip-section twist. A shape parameterization example
is shown at the top of Fig. 2, where a cubic B-spline
with 15 control points is used to closely approximate
the RAE-2822 airfoil. The root and tip airfoil sections
are linearly lofted to generate the wings shown.

Automatic Surface Tessellation

After modifying and regenerating the CAD-model,
CAPRI provides a surface triangulation for each com-
ponent. The triangulation is refined based on three

Airfoil Section
Control Points

Fig. 2 Example of two instances of a generic-wing
CAD model. A B-spline airfoil parameterization is
shown at the top of the figure.

measures of quality:3 1) triangle edge length, 2) the
deviation of an edge from the underlying CAD model,
and 3) a dihedral angle bound between adjacent trian-
gles. The triangulation algorithm is highly robust, but
in certain instances the resulting triangulations for a
component subject to small shape perturbations may
be significantly different. This may introduce noise
into the optimization problem, which we discuss fur-
ther in the Results section.

Recently, a new triangulation algorithm has been
added to CAPRI that provides a more uniform, right-
triangle based tessellation. An example of coarse tri-
angulations is shown in Fig. 3 for a dramatic change
in surface shape. The algorithm identifies component
faces that qualify for such triangulations, and other-
wise reverts back to the quality triangulation. The
new triangulation algorithm is less sensitive to small
geometry perturbations.

Mesh Generation and Flow Solution
The extraction of a wetted surface from a set of in-

tersecting components is the next task of the analysis
module (see Fig. 1). Since CAD-solid representations
typically rely on the use of parametric B-splines (or
NURBS), the computation of component intersections
can be costly within the CAD system. In the present
approach, the components are intersected after the
surface discretization. This operation is performed ef-
ficiently as a part of the component-based approach of
Cart3D .10 It should be noted that CAPRI caches an
associated triangulation with each component. This
caching avoids unnecessary re-triangulations for com-
ponents that are not modified or experience only rigid
body motion during the design process.

Cartesian volume meshes are generated by repeated
cell division of an initial coarse mesh.10 A parallel
multilevel method is used to solve the steady-state
Euler equations. The spatial discretization is second
order accurate using van Leer’s flux vector splitting in
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Fig. 3 Examples of right-triangle based tessellations for large shape deformations

conjunction with either Minmod or Venkatakrishnan’s
flux limiters, see Aftosmis et al.24 for details.

Optimization Algorithms
We cast the optimization problem as an uncon-

strained problem by lifting the side constraints, Eq. 2,
into the objective function using a penalty method.
The constraint imposed by the flowfield equations,
Eq. 3, is satisfied at every point within the feasi-
ble design space, and consequently these equations do
not explicitly appear in the formulation of the opti-
mization problem. We investigate the genetic algo-
rithm of Holst and Pulliam,16 and an unconstrained
BFGS quasi-Newton algorithm coupled with a back-
tracking line search.17,20,29 The objective function
gradient is evaluated using central-differences. We
“warm-start” the finite-difference gradient computa-
tions from the base-state solution, saving roughly 25 to
50% when compared with the standard full-multigrid
startup. The solution-transfer algorithm is described
by Aftosmis et al.30

Optimization Framework
The synthesis of individual modules into an auto-

mated and efficient optimization framework is a chal-
lenging software design problem. A number of so-
phisticated frameworks exist, such as the DAKOTA
toolkit,31 which provide a flexible and general ap-
proach for linking analysis tools with optimization
techniques in large parallel computing environments.
In order to have a direct control over the layout of
the framework, and therefore quickly evaluate differ-
ent parallel architectures, we pursue the development
of a custom framework.

The first part of the framework addresses the cou-
pling of the CAD/CAPRI module with the opti-
mization process. Figure 4 shows the layout of this
distributed client-server interface. The optimization
along with the analysis module are executed in a queue
system of large compute engines. At each iteration of
the optimization process, CAD geometry requests are
generated for different parameter values and these are
placed in a central repository (right side of Fig. 4). In-
dependent of the optimization runs, a geometry server
is initiated that consists of multiple CAD nodes (left
side of Fig. 4). The nodes process the geometry re-
quests by retrieving the required parts or assemblies
from a specified storage location, regenerating the
CAD models, and providing surface triangulations for
the optimization processes. Since the geometry re-
quests are independent, we expect the geometry server
to achieve nearly linear scalability.

Initially, it may appear that in order to obtain an
efficient geometry server, the number of CAD nodes
should match the number of geometry requests from
all optimization processes. In practice, the number of
CAD nodes is limited by the number of available CAD
licenses, as each node consumes one license. An im-
mediate concern is that the CAD nodes become the
bottleneck of the optimization process, idling the pro-
cessors of the compute engines. One of the driving
requirements in the design of the present geometry in-
terface is to maintain the efficiency of the optimization
process when only a handful of licenses are available,
yet remain scalable should the number of licenses in-
crease.

This is a classic problem of latency. To avoid the ge-
ometry processing bottleneck, we mask the latency of
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Fig. 5 Dynamic allocation of processors to mask the latency of CAD geometry processing (based on 64
CPUs as an example)
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Fig. 4 Layout of the interface between optimiza-
tion processes, or geometry clients, on the right
side and the distributed geometry server on the
left side.

the CAD nodes by dynamically allocating the available
processors of the optimization process to the number of
completed surface triangulations. Figure 5 illustrates
this on an example with 64 processors. At the start
of each design iteration, all processors are dedicated
to the solution of the first returned surface triangula-
tion from the CAD nodes. This is the base state of
the gradient method and the first chromosome of the
genetic algorithm, denoted as “Geometry 1” in Fig. 5.
Note that there is a brief idling of all processors, which
could be avoided by implementing an asynchronous
optimization approach. Upon completion of the first
geometry analysis, we check the number of completed

surface triangulations. These are processed by the
CAD nodes while the analysis of the first geometry
is performed on the compute engine, denoted as “Ge-
ometries 2 . . .K” in Fig. 5. The number of processors
is distributed among the completed surface triangula-
tions and multiple analysis modules are executed on
subsets of the available processors. This cycle repeats
until all geometry requests are analyzed. For exam-
ple, the optimization process may have 64 processors
available and if 4 surface triangulations are completed
by the CAD nodes, we can execute 4 analysis modules
in parallel with 16 processors per module, see Fig. 5.

It is important to note that the geometry intersec-
tion and volume mesh generation algorithms of the
analysis module (see Fig. 1) are serial algorithms,
while the flow solver is an efficient parallel solver.24

The dynamic, coarse-grained parallelism used during
each design iteration provides not only concurrent ex-
ecution of serial tasks, but also ensures high parallel
efficiency of the flow solver by limiting the number of
processors available to each analysis module. Studies
by Eldred et al.32 demonstrate that such multilevel
parallelism significantly improves the scalability of op-
timization frameworks.

The worst case scenario occurs when the wall-clock
time required for the processing of a geometry request
exceeds the time for completion of the flow solution
when all processors are used. If only one CAD node
is available, then this CAD node would not be able to
feed the compute engine with geometries without pro-
cessor idle time. This situation is unlikely, since CAD
model regeneration and tessellation tasks have com-
putational complexity of O(N2), while volume mesh
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generation and flow solution tasks are O(N3).
The CAD nodes are typically distributed among

available engineering workstations. They could also be
executed on a single parallel machine or the compute
engine itself. The individual nodes are fully indepen-
dent. Hence, the system is tolerant of node crashes
and it is easy to add or delete nodes. The nodes are
“greedy”, that is, they compete for geometry requests
by checking the CAD repository. In order to avoid
race conditions between nodes for the same geome-
try request, a node must first acquire a lock on the
CAD repository. Once a lock is obtained, the node
searches for the oldest geometry request and releases
the lock. This process is further complicated by the
fact that all communications between the node, the
CAD-request repository, the part storage location, and
the compute engines are performed using secure-shell
commands (see Fig. 4). Once a geometry request is
processed, the node notifies the optimization process
that the surface triangulation is ready. The surface tri-
angulation is pulled from the node by the optimization
process when the analysis of that particular configu-
ration is required. This facilitates the downloading of
the surface triangulations in parallel.

Results and Discussion
Two design examples are presented to investigate

the effectiveness of the new optimization framework.
We compare the genetic and BFGS quasi-Newton al-
gorithms in both examples. All geometry models are
constructed using the Pro/ENGINEER CAD system.
In the first example, we address noise in the optimiza-
tion process. By the use of a simple “2-D” geometry,
the contribution of noise due to changes in the cut-cells
of the volume mesh is isolated. A more complex ge-
ometry is used for the second example. This example
focuses on the efficiency of the CAD/CAPRI module
and the interface with the optimization procedure.

2-D Design Example

The first design example is based on a two-
dimensional transonic flow over the NACA 0012 airfoil.
The freestream Mach number is 0.7 and the initial
angle of attack is 3 deg. The airfoil section is actu-
ally modeled as a three-dimensional wing of unit-span,
with no twist and no taper, as shown at the bottom of
Fig. 2. All shape perturbations are performed by the
CAD/CAPRI geometry module.

The following experiment is performed to estimate
the level of discretization noise in a typical design land-
scape. We hold the airfoil geometry and flow condi-
tions fixed, and we monitor the variation in the lift and
drag coefficients due to rigid body motion of the airfoil.
Similar experiments have been reported by Anderson
et al.33 for unstructured meshes and Dadone et al.13

for Cartesian meshes. Ideally, the aerodynamic coeffi-
cients should remain constant. However, the changes

in the cut-cells, and the corresponding changes in the
truncation error of the spatial discretization, introduce
a variation, or noise, in the aerodynamic coefficients
that should be minimized to ensure smooth design
landscapes.

The extent of rigid body motion is based on the
coarsest cell on the body of the airfoil, which is roughly
0.7%c for a mesh with 20, 576 cells on the symmetry
plane after 14 levels of cell refinement. The cell is tra-
versed in 20% increments in both the horizontal and
vertical directions. Note that for this relatively sim-
ple transonic flow, the flow solver converges at least
six orders of magnitude. Hence, the variation in the
lift and drag coefficients is primarily influenced by the
local mesh truncation error. The following summary
provides guidelines that minimize the sensitivity of the
aerodynamic coefficients to the mesh:

• Sub-cell information9 regarding the variation of
the surface within the cut cell should be used.

• Additional local refinement of sharp features, such
as trailing edges, should be performed. The mesh
generator has been modified to perform this task
automatically.

The resulting peak-to-peak variation in lift is limited
to 0.5%, while the variation in drag is 1.7% or roughly
2 counts as the airfoil traverses the mesh. The noise
is the truncation error of the Cartesian cells projected
into the functionals of interest. This is an indication of
how close an optimization algorithm can approach the
optimal solution. In poorly-scaled, or flat, regions of
the design space, a gradient method may stall due to
the presence of such noise. However, once the level of
noise is established, we use this information to select
a sufficiently large finite-difference gradient stepsize34

to maximize the performance of the gradient method
for the given level of mesh refinement.

For design problems that involve only local shape
changes, the variation of the functionals is smaller.
Further noise reductions are obtained by the use of
the right-triangle tessellation algorithm (see Fig. 3).
The quality-based triangulation is more sensitive to
small shape perturbations, which results in local, non-
smooth changes in the surface discretization and may
trigger changes in the refinement boundaries of the
volume mesh. Overall, the issue of noise remains a
subject of ongoing research, with present focus on lim-
iter formulations in the cut-cells.

We demonstrate the performance of the framework
on a lift-constrained drag minimization problem. The
objective function is given by

J =





ωL

(
1− CL

C∗L

)2

+ ωD

(
1− CD

C∗D

)2

if CD > C∗D

ωL

(
1− CL

C∗L

)2

otherwise

(4)
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Fig. 6 Objective function convergence history for
the lift-constrained drag minimization problem (3
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where C∗D and C∗L represent the target drag and lift co-
efficients, respectively. The target lift coefficient is set
to 0.545, which is the lift coefficient for the initial shape
and flow conditions, and the target drag coefficient is
set to 0.002, which represents a five-fold reduction in
drag from the initial conditions. The weights ωL and
ωD are user specified constants set to 1.0 and 0.005,
respectively. The angle of attack and the vertical posi-
tion of two B-spline control points on the upper surface
of the airfoil are used as design variables (see Fig. 2).

Figure 6 shows the convergence of the objective
function for both the BFGS quasi-Newton (denoted
as gradient) and genetic (denoted as GA) algorithms.
The label “Design Iterations” in Fig. 6 refers to the
number of generations evaluated by the genetic al-
gorithm, and the number of objective function and
gradient evaluations performed by the quasi-Newton
algorithm. We use 16 chromosomes, i.e. objective
function evaluations, to define a generation of the ge-
netic algorithm. The quasi-Newton algorithm requires
seven objective function evaluations at each design it-
eration. The two optimization algorithms converge to
the same solution. The L2-norm of the gradient vec-
tor is reduced by 2.5 orders of magnitude. Assuming
that the objective function is converged within 15 de-
sign iterations for both optimizers, the quasi-Newton
algorithm required 105 function evaluations, while the
genetic algorithm required 240 function evaluations.

Figure 7 shows the convergence of the lift and drag
coefficients for the quasi-Newton algorithm. Note that
the drag coefficient is reduced by at least a factor of
two when compared with the initial design. Figure 8
shows the initial and final pressure distributions and
airfoil shapes.
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Fig. 7 Convergence of the lift and drag coefficients
for the quasi-Newton algorithm (3 design variables)
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Fig. 8 Pressure distribution and airfoil shapes for
the lift-constrained drag minimization problem (3
design variables)

3-D Design Example

The second design example is based on the configu-
ration shown in Fig. 9. This generic model is a CAD
assembly of five parts consisting of a fuselage with a
bluff base, a wing, a canard, a canted tail, and an
engine cluster. The wing and canard are constructed
from the same CAD model, which was also used in the
first design example and is shown in Fig. 2. At the as-
sembly level, the wing and canard parts are “attached”
to the fuselage via two parameters, their horizontal
and vertical locations, respectively. These parameters
are constrained to intersect the projection of the fuse-
lage on the symmetry plane within the CAD system.
This simple construct avoids non-physical configura-
tions, for example wings that detach from the fuselage
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Fig. 9 Model configuration for the second design
example (before component intersection)

during the optimization, even if the fuselage shape and
dimensions change.

Before presenting optimization results, we charac-
terize the performance of the optimization framework.
We focus on the analysis module, see Fig 1, as this
is the most expensive part of the framework. Ta-
ble 1 presents average CPU timing results for the
CAD model regeneration and surface triangulation us-
ing CAPRI. The timings for the fuselage and wing
parts are representative of any other component in
the assembly. The CAD-model regeneration times are
slightly faster for changes that do not require shape
modifications, i.e. no profile section changes. It is clear
from Table 1 that CAD-model regeneration times are
not a significant expense even for problems with many
design variables.

The CPU time for surface triangulation is greatly in-
fluenced by the choice of the triangulation algorithm.
For the fuselage, CAPRI uses the quality-based trian-
gulation algorithm. This is in contrast to the wing sur-
faces, where the right-triangle tessellation algorithm is
used. To further elucidate the performance reported
in Table 1, the quality-based triangulation algorithm
generates roughly 500 triangles per CPU sec., while the
right-triangle tessellation algorithm generates roughly
3, 300 triangles per CPU sec. While the time required
for surface triangulation is not prohibitive, it is impor-
tant to avoid all unnecessary re-triangulations during
the optimization. This is accomplished by caching an
associated baseline triangulation for each part prior to
the optimization and tracking parameter changes. For
example, we tag design variables that control relative
motion between components, since a change in these
parameters does not require surface re-triangulation.

Table 2 presents average timing results for individ-
ual components within the Cart3D analysis module.
The volume mesh contains roughly 1.5 million cells for
a half-span model of the configuration and 64 proces-
sors are used to obtain the flow solution. The time for
the mesh-solution transfer algorithm used to “warm-
start” finite-difference gradient computations is also
shown.

Valuable information regarding the CPU efficiency
during a design iteration is obtained by comparing Ta-
bles 1 and 2. For example, suppose that we have only

Table 2 Wallclock times for individual compo-
nents of the Cart3D module (600 MHz R14000
SGI Origin 3000)

Component Time (s) Algorithm
Mesh Generationa 132.0 Serial

Flow Solutionb 455.0 Parallel
Mesh Solution Transfer 26.0 Serial
a Includes component intersection (definition of wet-

ted surface), mesh generation, flow-solver domain
decomposition, and multigrid coarse-mesh genera-
tion

b Using 64 processors

one CAD license available and that the design problem
of interest involves design variables associated with
both the fuselage and wing. Then, the timings in Ta-
bles 1 and 2 indicate that the time required to complete
a CAD-model regeneration and surface triangulation
is a factor of six smaller than the time required for a
flow solution. This means that by the time the anal-
ysis module completes the flow solution of the first
chromosome of the GA or the base-state of the gradi-
ent method, six new surface triangulations are ready
for analysis. By subdividing the available CPUs of
the optimization process, we execute multiple analysis
modules in parallel to enhance the parallel efficiency
of the optimization framework.

We consider the optimization problem of attaining
a nearly zero pitching moment coefficient for the con-
figuration shown in Fig. 9 by optimizing the canard
control surface. The lift coefficient is constrained by
the initial lift of the configuration. The design vari-
ables are the control surface aspect ratio, twist, and
position along the center line of the fuselage. The
problem has two local optima, the tail or canard con-
figuration, with the canard configuration as the global
optimum due to an aft location of the center of gravity.
For optimization using the genetic algorithm, the ca-
nard area is also a design variable. This introduces the
possibility of a topology change in the design space,
since the resulting wetted surface may not include a
control surface, as shown in Fig. 10. We use 16 chro-
mosomes for each generation of the genetic algorithm.
For the gradient-based quasi-Newton algorithm, the
control surface area is kept constant and we start from
a canard configuration, i.e. the control surface is posi-
tioned in front of the center of gravity. The freestream
Mach number is 0.85 and the angle of attack is 1.0 deg.

The objective function is similar to Eq. 4, with a
target lift coefficient of 0.222 and a target pitching
moment coefficient of 0.001. The initial pitching mo-
ment is −0.0714. Figure 11 shows the convergence
history of the objective function. Note that the label
“Design Iteration” refers to the number of generations
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Table 1 Average CPU time for CAD-model regeneration and tessel-
lation (600 MHz R14000 SGI Octane Workstation, Pro/ENGINEER
kernel)

Part CAD-Model Tessellation Number of Tessellation
Regeneration (s) (s) Triangles Algorithm

Fuselage 2.0a 93.3 ≈ 41, 000 Quality-based
Wing 3.0b 16.5 ≈ 50, 000 Right-triangle

a No shape-section change, only global parameter modifications
b Shape-section change and planform parameter modifications

Fig. 10 Example configuration where the control
surface is not part of the wetted surface

evaluated by the genetic algorithm, and the number
of objective function and gradient evaluations by the
quasi-Newton algorithm. Both optimization methods
trim the configuration at the given flight conditions.
The gradient has been reduced by almost three or-
ders of magnitude. The genetic algorithm converges
within six design iterations, requiring only 96 function
evaluations. The quasi-Newton algorithm requires 56
function evaluations.

Figures 12(a) and 12(b) show the initial and final
designs for the quasi-Newton algorithm. The control
surface converged to the minimum allowable forward
location on the fuselage (8% of fuselage length), a twist
angle of 2.98 deg., and an aspect ratio of 6.03. Note
that the control surface area is fixed at 60.0 during
the optimization. Figure 12(c) shows the final design
using the genetic algorithm. For this case, the opti-
mization converged to the upper bound of the control
surface area, which is 60.0, a forward location of 8.2%
of fuselage length, a twist angle of 3.41 deg., and an
aspect ratio of 4.36. The difference in the two designs
indicates that the optimization problem does not have
a unique solution. There may be many control surfaces
that trim this configuration and further constraints are
required to define a unique problem.

Conclusions and Future Work
An automated optimization framework has been

developed for inviscid-flow aerodynamic design prob-
lems. Key aspects of the framework include the use of
a robust and efficient Cartesian method, a direct in-
terface to a feature-based CAD system, and the use of
two optimization algorithms, namely a quasi-Newton
and genetic algorithms. The CAD-system interface
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Fig. 11 Objective function convergence

provided by CAPRI, which controls geometry regener-
ation and surface tessellation tasks, performed well for
the selected design examples. Two major advantages
of the Cartesian method have been demonstrated: 1)
the decoupling of the surface mesh form the volume
mesh allows the direct use of surface tessellations gen-
erated by CAPRI, regardless of topology or large shape
changes, and 2) the component-based approach of
Cart3D alleviates the demands on the CAD system
and significantly reduces surface tessellation tasks by
reusing cached component triangulations.

We have shown that the level of noise in the de-
sign landscape can be reduced to levels acceptable
for gradient-based algorithms. As a result, both op-
timizers performed well for the selected design prob-
lems. Although the gradient-based algorithm requires
less function evaluations for the examples presented,
we found the genetic algorithm more tolerant of de-
sign landscape noise, which permits the use of coarser
meshes. We plan to investigate this further in our fu-
ture work. In addition, we intend to apply the present
framework to more difficult optimization problems and
real-life geometries. Such problems motivate the use of
hybrid strategies and more sophisticated optimization
methods.
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a) Initial configuration for quasi-Newton algorithm

b) Final configuration, quasi-Newton algorithm

c) Final configuration, genetic algorithm

Fig. 12 Surface Mach number (M∞ = 0.85, α = 1◦). Mach numbers above 1.3 are red and Mach numbers
below 0.5 are blue.
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